Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.13.562198

ABSTRACT

This research offers a bioinformatics approach to forecasting both domestic and wild animals' likelihood of being susceptible to SARS-CoV-2 infection. Genomic sequencing can resolve phylogenetic relationships between the virus and the susceptible host. The genome sequence of SARS-CoV-2 is highly interactive with the specific sequence region of the ACE2 receptor of the host species. We further evaluate this concept to identify the most important SARS-CoV-2 binding amino acid sites in the ACE2 receptor sequence through the common similarity of the last common amino acid sites (LCAS) in known susceptible host species. Therefore, the SARS-CoV-2 viral genomic interacting key amino acid region in the ACE2 receptor sequence of known susceptible human host was summarized and compared with other reported known SARS-CoV-2 susceptible host species. We identified the 10 most significant amino acid sites for interaction with SARS-CoV-2 infection from the ACE2 receptor sequence region based on the LCAS similarity pattern in known sensitive SARS-CoV-2 hosts. The most significant 10 LCAS were further compared with ACE2 receptor sequences of unknown species to evaluate the similarity of the last common amino acid pattern (LCAP). We predicted the probability of SARS-CoV-2 infection risk in unknown species through the LCAS similarity pattern. This method can be used as a screening tool to assess the risk of SARS-CoV-2 infection in domestic and wild animals to prevent outbreaks of infection.


Subject(s)
COVID-19 , Amino Acid Metabolism, Inborn Errors
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.09.21261669

ABSTRACT

The rapid spread of SARS-CoV-2 has placed a significant burden on public health systems to provide rapid and accurate diagnostic testing highlighting the critical need for innovative testing approaches for future pandemics. In this study, we present a novel sample pooling procedure based on compressed sensing theory to accurately identify virally infected patients at high prevalence rates utilizing an innovative viral RNA extraction process to minimize sample dilution. At prevalence rates ranging from 0-14.3%, the number of tests required to identify the infection status of all patients was reduced by 75.6% as compared to conventional testing in primary human SARS-CoV-2 nasopharyngeal swabs and a coronavirus model system. Additionally, our modified pooling and RNA extraction process minimized sample dilution which remained constant as pool sizes increased. Our use of compressed sensing can be adapted to a wide variety of diagnostic testing applications to increase throughput for routine laboratory testing as well as a means to increase testing throughput to combat future pandemics. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=113 SRC="FIGDIR/small/21261669v1_ufig1.gif" ALT="Figure 1"> View larger version (37K): org.highwire.dtl.DTLVardef@473e40org.highwire.dtl.DTLVardef@1480d21org.highwire.dtl.DTLVardef@1562579org.highwire.dtl.DTLVardef@b65ace_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
COVID-19 , Virus Diseases
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.16.21253371

ABSTRACT

COVID-19 is a disease with vast impact, yet much remains unclear about patient outcomes. Most approaches to risk prediction of COVID-19 focus on binary or tertiary severity outcomes, despite the heterogeneity of the disease. In this work, we identify heterogeneous subtypes of COVID-19 outcomes by considering ‘axes’ of prognosis. We propose two innovative clustering approaches − ‘Layered Axes’ and ‘Prognosis Space’ – to apply on patients’ outcome data. We then show how these clusters can help predict a patient’s deterioration pathway on their hospital admission, using random forest classification. We illustrate this methodology on a cohort from Wuhan in early 2020. We discover interesting subgroups of poor prognosis, particularly within respiratory patients, and predict respiratory subgroup membership with high accuracy. This work could assist clinicians in identifying appropriate treatments at patients’ hospital admission. Moreover, our method could be used to explore subtypes of ‘long COVID’ and other diseases with heterogeneous outcomes.


Subject(s)
COVID-19 , Space Motion Sickness , Long QT Syndrome
5.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2008.01944v1

ABSTRACT

In this paper, we consider the problem of designing optimal pooling matrix for group testing (for example, for COVID-19 virus testing) with the constraint that no more than $r>0$ samples can be pooled together, which we call "dilution constraint". This problem translates to designing a matrix with elements being either 0 or 1 that has no more than $r$ '1's in each row and has a certain performance guarantee of identifying anomalous elements. We explicitly give pooling matrix designs that satisfy the dilution constraint and have performance guarantees of identifying anomalous elements, and prove their optimality in saving the largest number of tests, namely showing that the designed matrices have the largest width-to-height ratio among all constraint-satisfying 0-1 matrices.


Subject(s)
COVID-19
6.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.14919v1

ABSTRACT

We consider a novel method to increase the reliability of COVID-19 virus or antibody tests by using specially designed pooled testings. Instead of testing nasal swab or blood samples from individual persons, we propose to test mixtures of samples from many individuals. The pooled sample testing method proposed in this paper also serves a different purpose: for increasing test reliability and providing accurate diagnoses even if the tests themselves are not very accurate. Our method uses ideas from compressed sensing and error-correction coding to correct for a certain number of errors in the test results. The intuition is that when each individual's sample is part of many pooled sample mixtures, the test results from all of the sample mixtures contain redundant information about each individual's diagnosis, which can be exploited to automatically correct for wrong test results in exactly the same way that error correction codes correct errors introduced in noisy communication channels. While such redundancy can also be achieved by simply testing each individual's sample multiple times, we present simulations and theoretical arguments that show that our method is significantly more efficient in increasing diagnostic accuracy. In contrast to group testing and compressed sensing which aim to reduce the number of required tests, this proposed error correction code idea purposefully uses pooled testing to increase test accuracy, and works not only in the "undersampling" regime, but also in the "oversampling" regime, where the number of tests is bigger than the number of subjects. The results in this paper run against traditional beliefs that, "even though pooled testing increased test capacity, pooled testings were less reliable than testing individuals separately."


Subject(s)
COVID-19
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-38631.v2

ABSTRACT

Objective. We aimed to describe the features of 220 nonemergency (mild or common type) COVID-19 patients from a shelter hospital, as well as evaluate the efficiency of antiviral drug, Arbidol in their disease progressions. Methods. Basic clinical characteristics were described and the efficacy of Arbidol was evaluated based on gender, age, maximum body temperature of the patients. Results. Basically, males had a higher risk of fever and more onset symptoms than females. Arbidol could accelerate fever recovery and viral clearance in respiratory specimens, particularly in males. Arbidol also contributed to shorter hospital stay without obvious adverse reactions.Conclusions. In the retrospective COVID-19 cohort, gender was one of the important factors affecting patient's conditions. Arbidol showed several beneficial effects in these patients, especially in males. This study brought more researches enlightenment in understanding the emerging infectious disease.


Subject(s)
COVID-19 , Fever , Communicable Diseases, Emerging
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3590468

ABSTRACT

Background: Accurate risk prediction of clinical outcome would usefully inform clinical decisions and intervention targeting in COVID-19. The aim of this study was to derive and validate risk prediction models for poor outcome and death in adult inpatients with COVID-19. Methods: Model derivation using data from Wuhan, China used logistic regression with death and poor outcome (death or severe disease) as outcomes. Predictors were demographic, comorbidity, symptom and laboratory test variables. The best performing models were externally validated in data from London, UK. Findings: 4.3% of the derivation cohort (n=775) died and 9.7% had a poor outcome, compared to 34.1% and 42.9% of the validation cohort (n=226). In derivation, prediction models based on age, sex, neutrophil count, lymphocyte count, platelet count, C-reactive protein and creatinine had excellent discrimination (death c-index=0.91, poor outcome c-index=0.88), with good-to-excellent calibration. Using two cut-offs to define low, high and very-high risk groups, derivation patients were stratified in groups with observed death rates of 0.34%, 15.0% and 28.3% and poor outcome rates 0.63%, 8.9% and 58.5%. External validation discrimination was good (c-index death=0.74, poor outcome=0.72) as was calibration. However, observed rates of death were 16.5%, 42.9% and 58.4% and poor outcome 26.3%, 28.4% and 64.8% in predicted low, high and very-high risk groups. Interpretation: Our prediction model using demography and routinely-available laboratory tests performed very well in internal validation in the lower-risk derivation population, but less well in the much higher-risk external validation population. Further external validation is needed. Collaboration to create larger derivation datasets, and to rapidly externally validate all proposed prediction models in a range of populations is needed, before routine implementation of any risk prediction tool in clinical care. Funding Statement: HW and HZ are supported by Medical Research Council and Health Data Research UK Grant (MR/S004149/1), Industrial Strategy Challenge Grant (MC_PC_18029) and Wellcome Institutional Translation Partnership Award (PIII054). RD is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. DMB is funded by a UKRI Innovation Fellowship as part of Health Data Research UK MR/S00310X/1 (https://www.hdruk.ac.uk). KD is supported by LifeArc STOPCOVID award. This work uses data provided by patients and collected by the NHS as part of their care and support. XW is supported by National Natural Science Foundation of China (grant number:81700006). QL is supported by National Key R&D Program (2018YFC1313700), National Natural Science Foundation of China (grant number: 81870064) and the “Gaoyuan” project of Pudong Health and Family Planning Commission (PWYgy2018-06).Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: The derivation study was approved by the Research Ethics Committee of Shanghai Dongfang Hospital and Taikang Tongji Hospital. The external validation study operated under London South East Research Ethics Committee (reference 18/LO/2048) approval granted to the King’s Electronic Records Research Interface (KERRI).


Subject(s)
Mucocutaneous Lymph Node Syndrome , Cross Infection , COVID-19 , Pyruvate Carboxylase Deficiency Disease
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.28.20082222

ABSTRACT

Background Accurate risk prediction of clinical outcome would usefully inform clinical decisions and intervention targeting in COVID-19. The aim of this study was to derive and validate risk prediction models for poor outcome and death in adult inpatients with COVID-19. Methods Model derivation using data from Wuhan, China used logistic regression with death and poor outcome (death or severe disease) as outcomes. Predictors were demographic, comorbidity, symptom and laboratory test variables. The best performing models were externally validated in data from London, UK. Findings 4.3% of the derivation cohort (n=775) died and 9.7% had a poor outcome, compared to 34.1% and 42.9% of the validation cohort (n=226). In derivation, prediction models based on age, sex, neutrophil count, lymphocyte count, platelet count, C-reactive protein and creatinine had excellent discrimination (death c-index=0.91, poor outcome c-index=0.88), with good-to-excellent calibration. Using two cut-offs to define low, high and very-high risk groups, derivation patients were stratified in groups with observed death rates of 0.34%, 15.0% and 28.3% and poor outcome rates 0.63%, 8.9% and 58.5%. External validation discrimination was good (c-index death=0.74, poor outcome=0.72) as was calibration. However, observed rates of death were 16.5%, 42.9% and 58.4% and poor outcome 26.3%, 28.4% and 64.8% in predicted low, high and very-high risk groups. Interpretation Our prediction model using demography and routinely-available laboratory tests performed very well in internal validation in the lower-risk derivation population, but less well in the much higher-risk external validation population. Further external validation is needed. Collaboration to create larger derivation datasets, and to rapidly externally validate all proposed prediction models in a range of populations is needed, before routine implementation of any risk prediction tool in clinical care.


Subject(s)
COVID-19 , Death
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.24.20078006

ABSTRACT

BackgroundThe National Early Warning Score (NEWS2) is currently recommended in the United Kingdom for risk stratification of COVID outcomes, but little is known about its ability to detect severe cases. We aimed to evaluate NEWS2 for severe COVID outcome and identify and validate a set of routinely-collected blood and physiological parameters taken at hospital admission to improve the score. MethodsTraining cohorts comprised 1276 patients admitted to Kings College Hospital NHS Foundation Trust with COVID-19 disease from 1st March to 30th April 2020. External validation cohorts included 5037 patients from four UK NHS Trusts (Guys and St Thomas Hospitals, University Hospitals Southampton, University Hospitals Bristol and Weston NHS Foundation Trust, University College London Hospitals), and two hospitals in Wuhan, China (Wuhan Sixth Hospital and Taikang Tongji Hospital). The outcome was severe COVID disease (transfer to intensive care unit or death) at 14 days after hospital admission. Age, physiological measures, blood biomarkers, sex, ethnicity and comorbidities (hypertension, diabetes, cardiovascular, respiratory and kidney diseases) measured at hospital admission were considered in the models. ResultsA baseline model of NEWS2 + age had poor-to-moderate discrimination for severe COVID infection at 14 days (AUC in training sample = 0.700; 95% CI: 0.680, 0.722; Brier score = 0.192; 95% CI: 0.186, 0.197). A supplemented model adding eight routinely-collected blood and physiological parameters (supplemental oxygen flow rate, urea, age, oxygen saturation, CRP, estimated GFR, neutrophil count, neutrophil/lymphocyte ratio) improved discrimination (AUC = 0.735; 95% CI: 0.715, 0.757) and these improvements were replicated across five UK and non-UK sites. However, there was evidence of miscalibration with the model tending to underestimate risks in most sites. ConclusionsNEWS2 score had poor-to-moderate discrimination for medium-term COVID outcome which raises questions about its use as a screening tool at hospital admission. Risk stratification was improved by including readily available blood and physiological parameters measured at hospital admission, but there was evidence of miscalibration in external sites. This highlights the need for a better understanding of the use of early warning scores for COVID. KO_SCPLOWEYC_SCPLOWO_SCPCAP C_SCPCAPO_SCPLOWMESSAGESC_SCPLOWO_LIThe National Early Warning Score (NEWS2), currently recommended for stratification of severe COVID-19 disease in the UK, showed poor-to-moderate discrimination for medium-term outcomes (14-day transfer to ICU or death) among COVID-19 patients. C_LIO_LIRisk stratification was improved by the addition of routinely-measured blood and physiological parameters routinely at hospital admission (supplemental oxygen, urea, oxygen saturation, CRP, estimated GFR, neutrophil count, neutrophil/lymphocyte ratio) which provided moderate improvements in a risk stratification model for 14-day ICU/death. C_LIO_LIThis improvement over NEWS2 alone was maintained across multiple hospital trusts but the model tended to be miscalibrated with risks of severe outcomes underestimated in most sites. C_LIO_LIWe benefited from existing pipelines for informatics at KCH such as CogStack that allowed rapid extraction and processing of electronic health records. This methodological approach provided rapid insights and allowed us to overcome the complications associated with slow data centralisation approaches. C_LI


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL